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- ABSTRACT 

 
This work describes the application of neural networks in the modeling of hot 

rolling processes. This relatively new technique of Artificial Intelligence was conceived more 
than fifty years ago, but it only became really feasible with the arrival of low cost computer 
processing power. The first papers about its utilization in the hot rolling field were published 
about six years ago. Although the first results were promising, there is still some lack of 
confidence about its real performance under industrial conditions, which is preventing the 
exclusive use of this new tool in the modeling of hot rolling processes. However, neural networks 
are already being used, as a standard feature, in hybrid automation models for hot strip mills, 
where they calculate adjusting coefficients for theoretical models. However, continuous use of 
these tools and its continuous development certainly will contribute to increase the general 
confidence in this revolutionary method and pave the way for a more intensive application in 
practical cases. 
 
 
 
- INTRODUCTION 

 
The advent of revolutionary steelmaking processes, new materials like high 

performance polymers and ceramics, and a chronic excess of capacity production made steel 
market very competitive. If a steelmaker wants to keep or expand its market share, it must offer 
products with excellent quality at an affordable price. One of the keys to achieve this goal is the 
automation of the steelmaking process. In fact, this is one of the major stages of evolution in a 
steel plant, as it improves both process and product consistency, minimizes costs and make 
production control easy. All these factors promote a significant increase in the process 
cost/benefit ratio. 

The automation of hot rolling processes requires the development of several 
mathematical models for the simulation and quantitative description of the industrial operations 
involved. 

The main feature of the neural networks - the establishment of complex 
relationships between data through a learning process, with no need to previously propose any 
model to correlate the desired variables - makes this technique very attractive in the modeling of 
processes where traditional mathematical modeling is difficult or impossible. Besides that, they 
are almost immune to noise or spurious data. The development of neural network models is 
relatively quick and, in most cases, simple. Several researchers performed off-line tests on the 
modeling of hot rolling processes using this technique, frequently getting good results. 

However, practical applications of this technique in the field of hot rolling are 
very scarce, mainly due to the lack of confidence about its performance. This distrust on neural 
networks arises from many factors. First of all, only recently this technique became feasible, with 
the increasingly wide availability of low-cost computer power. Besides that, as the mathematical 



 

foundations of neural networks are not still completely developed, no one knows exactly the 
mechanisms of its learning, that is, it is unknown how a neural networks calculates a given result. 
So, frequently they are considered as potentially unreliable “black boxes”. Under some aspects 
this is a justified attitude, as a wrong decision taken by an industrial automation system can lead 
to disastrous failures and high economical losses. 

One additional aspect to be noted is the natural inertia to modify existing 
automation systems that are working well. The natural field of application for a new technique 
like neural networks is in hot rolling mills that do not have automation systems yet. However, in 
these equipments, the lack of instrumentation, data acquisition and process computers hindered 
the on-line use of this technique. 

Neural networks can be used in several ways to model a given process. They 
can be used alone, but the mentioned lack of confidence on this technique has prevented this kind 
of approach in real world applications, at least in the case of hot rolling. 

Other approach is the use of hybrid Artificial Intelligence systems, like neural 
networks-expert systems and neuro-fuzzy logic [1]. Few examples of this technique can be found 
in the field of hot rolling up to this moment. 

An alternative that is being popular is the application of neural networks for the 
calculation of correction factors to be used in traditional mathematical models that control a given 
process [2]. That is, a hybrid traditional mathematical process-neural networks, where the neural 
network act as an assistant to the mathematical model. This kind of neural network is commonly 
called parameter network. For example, it can calculate heat transfer coefficients for a traditional 
heat flow mathematical model to be applied in the control of a slab reheating furnace. 

Another example of this kind of hybridization is the so-called correction 
network. In this case, the traditional mathematical model calculates its best value for the process 
that is being controlled, while a neural network simultaneously produces the estimate of the 
inherent error in the mathematical model’s approximation. In this case, the neural network is an 
equal partner to the mathematical model. 

A variation of this approach is the synthesis network, a technique still in 
investigation [2]. In this case, mathematical models pre-process the entry data, yielding 
intermediate results that feed a neural network that calculates the desired target value from these 
highly compressed intermediate results. Additional parameters can be directly input to the neural 
network. An example of this approach is the pre-calculation of the strip thickness profile to be got 
in the finishing train of a hot strip mill. In this case, a traditional mathematical model calculates 
the thermal crown, wear, bending of the work rolls and the resulting roll-gap profile under load 
for each rolling stand. These calculated values of the resulting roll-gap profile for all rolling 
stands and the respective strip tensions feed a neural network that calculates the profile of the 
finished strip. 

The advantages of the use of the combinations of mathematical models and 
neural networks are as follow [2]: 

 
- The neural network always performs the on-line adaptation of the combination. In 

fact, its inherent learning capability makes them specially fitted for this purpose. 
 
- Previous experience acquired from previous mathematical modeling is not lost. 

However, this advantage disappears if a hot rolling model must be done from scratch, 
or if the process to be modeled have a very complex or unfeasible mathematical 
formulation. 

 
- As said before, a model based solely on neural networks tends to appear as a black 

box to technical people. A combination model makes clear the relationships within 



 

the technical process, making easy its acceptance and tranquilizing the automation 
engineers. However, it is still lacking a clear comparison between the predicting 
performance of a mathematical model-neural network hybrid and of a pure neural 
network model for the same application. This information is fundamental to 
determine the approach to be adopted when a hot rolling model must be done from 
scratch, as a pure neural network model is developed in a much more simpler and 
quicker way than a traditional mathematical model. 

 
- The corrections calculated by the fully trained neural networks of these hybrid 

systems could indicate if a mathematical model must be refined. This occurs when 
the magnitude of the corrections proposed by a neural network becomes abnormally 
high. 

 
 

The majority of the case studies described in this chapter deals with off-line or 
laboratory mill models, but the development of industrial on-line neural network models already 
began and continues to be carried out. It is expected that, as this approaches prove to be 
effectively reliable, the number of its real world hot rolling applications will grow very quickly.  

 
 

- SIZING SLABS FOR PLATE ROLLING 
 
A very first trial on the application of neural networks in the field of hot rolling 

was developed at Usiminas, a Brazilian steelworks [3]. It was developed a neural network to 
replace a previous regression equation used for the calculation of the dimensions of the slab to be 
rolled at the plate mill, aiming minimal metal discard after hot rolling. 

Some advantages are inherent to the use of neural networks instead of multiple 
regression equations [4]. There is no need to select the most important independent variables in 
the data set, as neural networks can automatically identify them. The synapses associated to 
irrelevant variables readily show negligible weight values; on its turn, relevant variables present 
significant synapse weight values. As said previously, there is also no need to propose a function 
as model, as required in multiple regression. The learning capability of neural networks allows 
them to “discover” more complex and subtle interactions between the independent variables, 
contributing to the development of a model with maximum precision. Besides that, neural 
networks are intrinsically robust, that is, they show more immunity to noise eventually present in 
real data; this is an important factor in the modeling of industrial processes. 

Obviously, the forecasting performance of a slab sizing model will be 
consistent only if several operational parameters are kept under control: weight and dimensions 
of the slabs;  precision of the pass schedules, including the broadsizing step; distribution of strain 
in the broadsizing step; plate crown and scale losses during the reheating of the slab. Other 
factors also must be considered, like the specific characteristics of the process of slab production 
(continuous cast or from ingots rolled at the slabbing mill), rolling type (normal or controlled) 
and broadsizing ratio. 

It is well known that the rolling stock produced after plate rolling does not 
present an exact rectangular shape, as can be seen in figure 1. The required rectangular plates are 
extracted from the rolling stock through the trimming of its edges. In order to maximize the 
metallic yield of the process, the length of the original slab must be calculated precisely, in such a 
way that the dimensions of the rolling stock permits the extraction of the desired plate and the 
lengths of the discarded portions are minimal. 



 

Unfortunately, the paper does not give details about the former regression 
equation, nor the parameters used in the developed neural network, except that it is of the back-
propagation type, with two neurons in the input layer, five in one hidden layer and one neuron in 
the output layer. According to the authors of this paper, the number of neurons of the hidden 
layer of this neural network was calculated after the Hecht-Kolmogorov’s theorem, which affirms 
that the optimum number of neurons of a hidden layer is equal to twice the number of input 
neurons plus one [3]. 

This neural network was trained with data measured from 239 rolling stocks. 
Figure 2 shows the improvement in the metallic yield that was got with the use of this neural 
network. This amelioration can be summarized by the following parameters: increase of 0,5% in 
the plate-slab programmed yield; increase of 1,0% in the trimming yield and increase of 0,32% in 
the inspection yield. 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
Figure 1: Schematic drawing of a rolling stock immediately after its rolling in a plate mill. The 

dotted rectangle represents the required plate. 
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Figure 2: Comparison between metallic yield got with the application of the former regression 

formula and the newly developed neural network [3]. 
 



 

- MODELING THERMAL PROFILE OF SLABS IN THE REHEATING FURNACE 
 
At Cosipa, another Brazilian steelmaker, thermal profiles of slabs being 

reheated are periodically collected at the plate mill line. These profiles are measured with an 
instrumented slab, which has drilled holes at several locations and depths. Chromel-alumel 
thermocouples are inserted into these holes and connected to a data logger, which collects all the 
temperature evolution of these points during slab reheating. The data logger is sheltered in a 
stainless steel box coated with rock wool and filled with water and ice. 

It was decided to develop a neural network model to forecast the inner 
temperature of the slabs being reheated as a function of their reheating time and their superficial 
temperature [5]. This is a case with a relatively easy mathematical solution, and thus adequate to 
allow a comparison between the performance of the neural network and the conventional 
numerical models. 

With this purpose in mind, a neural network with three layers was developed, 
after several configuration trials: 

 
- Input layer with three neurons: 

. Reheating time [min] 

. Slab upper surface temperature [oC] 

. Slab lower surface temperature [oC]; 
 

- Hidden layer with thirteen neurons; 
 
- Output layer with ten neurons, each of them representing a point in the 

instrumented slab where the temperature was measured. 
 
The use of more or less neurons in the hidden layer, as well  the use of more 

than one hidden layer, did not improve the performance of the neural network. 
Data was got from an instrumented slab with the following dimensions: 157 

mm (thickness), 1025 mm (width) and 5600 mm (length). It was reheated in a pusher furnace. 
More information about data used in this work can be found elsewhere [6]. 

It was verified that this neural network showed its best performance forecasting 
the mid-thickness temperature of the slab, with Pearson’s correlation coefficient r about 0.997 
and standard error of estimate of 26.5oC. The worst performance of this neural network occurred 
during forecasting the temperature near the lower surface of the slab, that is, at a distance of about 
6 mm from this surface: its results showed a Pearson’s correlation coefficient r of approximately 
0.993 and standard error of estimate of 36.6oC. Figure 3 shows the dispersion plots of the 
calculated and real temperatures of both two points considered. 

The performance reached by this neural network was found adequate, as it was 
similar to previously developed mathematical models, which showed errors of approximately 
30oC. 
 
 
- MODELING HOT STRENGTH OF STEEL 
 

Hot strength can be defined as the stress that begins and keeps the yielding of a 
material in a uniaxial stress state. It is one of the fundamental properties of a material under high 
temperature. In the case of metals being rolled, the knowledge of its magnitude is vital for the 
correct designing of the mechanical and electrical components of the rolling stands, as well in the 
development of mathematical models and automation algorithms for the hot rolling process. 
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Figure 3: Precision achieved by the neural network used for modeling the thermal profile of a 

slab during reheating, considering the best (mid-thickness temperature) and the worst 
case (near lower surface temperature) [5]. 

 
Hot rolling of steels normally occurs at temperatures corresponding to its 

austenitic range. Figure 4 shows schematically a typical stress versus strain curve of steel at high 
temperature. As can be seen from this picture, three steps characterize this curve: strain 
hardening, dynamic recrystallization and steady state. During the initial step of strain hardening 
stress grows monotonically. As soon as stress reaches its maximum value, the advent of 
dynamical recrystallization causes a lowering on its magnitude, down to a steady-state value, 
which is approximately constant or eventually shows a cyclical behavior, which denotes an 
“equilibrium” between strain hardening and recovery processes. 

In the last 30 years several empirical equations were developed to model the 
hot strength of steel in function of thermomechanical parameters like temperature, strain and 
strain rate. The most famous are Tarokh, Samanta, Hajduk, Tegart, Rossard and Jäckel. 
Normally these equations only consider the strain hardening step of the curve stress x strain. Few 
models, like Jäckel,  covers all the strain range, but normally they consist of two or more 
equations, each one describing a step of the curve. Its application is not always easy, as real hot 
strength curves are not always well-behaved as the didactical example of figure 4. This fact 
makes difficult to identify the corresponding strain ranges to be applied to the several equations 
that constitutes the full range model. Some other models include the effect of the chemical 
composition of steel (Shida, Misaka). The Shida model also considers the softening that occurs in 
steel near the Ar3 temperature. 

Other possibility for modeling hot strength of steels is the application of 
interpolation methods using large multidimensional data bases. However, memory requirements 
for this kind of approach are huge, making it practically unfeasible, at least up to this moment. 

A first tentative of comparison between conventional empirical equations for 
the calculation of hot strength of steels and neural networks used data available from hot torsion 
tests of HSLA steels. The samples were heated at 1150oC during 30 minutes. After that, the 
temperature of the specimen was reduced down to the aimed value. Tests were isothermically 
performed under temperatures of 1100, 1000, 900 and 800oC, and under strain rates of 0.1, 1 and 
10 s-1.  Six empirical equations were used for the calculation of hot strength from temperature, 
strain and strain rate in the strain hardening step of the curve hot strength versus strain: Tarokh, 
Samanta, Hajduk, Tegart, Rossard and the strain hardening equation of the model of Jäckel. The 
best fitted neural network for this purpose was of the back-propagation type, with three neurons 



 

in the input layer, seven neurons in one hidden layer and one output neuron. The number of 
neurons in the hidden layer was calculated according to the already mentioned Hecht-
Kolmogorov theorem. 

 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Figure 4: Schematic representation of the hot strength versus strain curve of steel in the austenite 

range. 
 
 
The chemical composition of the steels can be seen in table I. Data used in the 

non-linear regression program for the parameter fitting of the empirical equations and during the 
learning/testing steps of the neural network was got directly from the stress versus strain curves 
determined in the hot torsion machine, without any pre-processing.  

 
Steel C Mn Si Al Cr Ni Cu Nb V Ti 

Nb 0.14 1.02 0.40 0.040 0.55 - 0.24 0.022 - - 
NbV 0.11 1.24 0.28 0.036 - - - 0.036 0.042 - 
NbTiV 0.10 1.58 0.27 0.025 0.22 0.26 - 0.042 0.054 0.018 

 
Table I: Chemical compositions of the HSLA steels tested in [7]. 
 

 
The radar-type graphic in figure 5 shows that neural networks had a clear better 

forecasting power than the previous empirical equations: the best empirical model (Samanta) 
presented a mean standard error of estimate of approximately 1.5 kgf/mm2, whereas the neural 
networks showed a value of 1.2 kgf/mm2. This value was calculated during the testing step of the 
neural network, after its full training, using a data set not used during its training. 

Besides that, it was possible to train these neural networks with data from the 
full strain range of the curve hot strength versus strain. That is, one single neural network can 
model the strain hardening, dynamic recrystallization and steady state steps of this curve. The 
neural networks used in this case have the same topology as the previously described. Its standard 
error of estimate of calculated during the testing after the training step was approximately 1.7 
kgf/mm2. This kind of modeling can not be performed with the conventional empirical equations 
cited here. Besides that, the use of neural networks does not require the division of the hot 

Strain Hardening 

Steady State 

Stress 

Strain 0 εp



 

strength curve in distinct steps, a kind of task which is frequently hard. This made the modeling 
of the full hot strength versus strain curves very easy and quick. The best agreement given by the 
neural network for the dynamic recrystallization region was also verified in other works [8] for an 
austenitic stainless steel.  
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Figure 5: Radar-type graphic showing the forecasting power of the several models tested in [7], 
in terms of the standard error of estimate, in kgf/mm2. 

 
 
This work was later expanded to a more wide selection of carbon and HSLA 

steels [9]. The chemical composition of these steels can be seen in table II. The specimens were 
heated to 1100oC for 15 minutes, and then cooled down to the aimed temperature. Tests were 
isothermically performed under temperatures of 1100, 1000, 900 and 800oC, and under strain 
rates of 0.5, 1 and 5 s-1. The same six empirical equations cited before were used for the modeling 
of hot strength from temperature, strain and strain rate in the strain hardening step of the curve 
hot strength versus strain. The neural network used in this work was slightly different from the 
previous work: it has seven neurons distributed in two hidden layers (four in the second layer and 
three in the third layer). This arrangement showed to be better than the previously used. Data 
used in the non-linear regression program for the parameter fitting of the empirical equations and 
during the learning/testing steps of the neural network was previously processed. All the hot 
strength versus strain curves got from the torsion tests were smoothed using a modified Fourier’s 
transform technique and compensated for the adiabatic heating effect arising from hot 
deformation.  

Surprisingly, in this case neural networks did not show the best forecast power, 
as can be seen in the radar graphic of figure 6. Considering the performance observed in all steels, 
the forecast power of the empirical models of Tegart, Jäckel, Samanta and Hajduk were greater 



 

than of the neural networks. The situation is even worse when one considers only carbon steels; 
in this case, also the Samanta model surpasses the forecast power of the neural networks. 
However, considering HSLA steels alone, only the equations of Tegart, Jäckel and Samanta are 
superior to the neural networks. 

 

AÇO  C  Mn  Si  Al  Cr Cu  Nb  V  Ti  N 

C1 0.09 0.53 0.18 0.029 - - - - - 0.0047 

C2 0.15 0.90 0.21 0.039 - - - - - 0.0053 

CMn 0.16 1.48 0.36 0.039 - - - - - 0.0048 

Nb 0.18 1.34 0.30 0.025 - - 0.033 - - 0.0074 

NbTi1 0.14 1.11 0.30 0.044 - - 0.020 - 0.015 0.0054 

NbTi2 0.14 1.34 0.23 0.035 - - 0.033 - 0.014 0.0048 

NbTiV 0.12 1.50 0.31 0.038 - - 0.047 0.051 0.020 0.0064 

NbCrCu1 0.16 1.03 0.41 0.029 0.54 0.23 0.025 - - 0.0107 

NbCrCu2 0.13 0.99 0.38 0.042 0.50 0.22 0.014 - - 0.0095 
 

 
Table II: Chemical composition of the steels studied in [9]. 

 
 
A probable reason for this unexpected conclusion can be attributed for the 

greater precision achieved in the models developed in [9] in comparison with the forecast power 
reported in [7]. In fact, the global standard error of estimate of the best model got in [7] has a 
value of approximately 1.2 kgf/mm2, while the same parameter in [9] was about the half of this 
value - 0.63 kgf/mm2. This better precision result from a better experimental practice and from 
data smoothing procedures carried out in [9], which minimized the random errors present in the 
raw data. This enhanced the mathematical relationships between the variables, which 
simultaneously improved the forecast power of the empirical equations and minimized a great 
advantage of the neural networks, that is, its immunity to noise and spurious data. So, in the first 
work [7], which was based on raw data from torsion tests, the better forecast power of neural 
networks certainly arosed from its inherent noise filtering effect in raw data. This condition, 
however, would be no longer true in the next work [9]. 

Other authors also got very good results modeling hot strength of specific 
steels in function of the thermomechanical parameters. An example is a three layer, feed-forward 
neural network for the calculation of hot flow strength of an extra-low-carbon steel from 
temperature, strain grade and strain rate. Best results were got with a hidden layer with 14 
neurons. The relative errors were within ±5%, with the exception of some few points at low 
strains [10].  

From the good results got from these models of hot strength, it was almost 
unavoidable to trial neural networks to forecast hot strength not only from thermomechanical 
parameters, but also including the chemical composition of steel as well. After all, neural 
networks can identify the complex relationships between hot strength and chemical composition 
better than any empirical model. So, the work described in [9] was extended, including the effect 
of the chemical composition of steel [11]. A neural network for the prediction of hot strength 
from chemical composition of steels and hot forming parameters was then developed. This 
perceptron had 13 neurons in the input layer (strain temperature, degree and rate; carbon, 



 

manganese, silicon, aluminum, copper, chromium, niobium, titanium, vanadium and nitrogen 
contents). The total number of neurons in the hidden layers was 27, making an analogy with the 
theorem of Hecht-Kolmogorov [4]; they were uniformly distributed in three hidden layers, each 
one with 9 neurons. The output layer, obviously, had only one neuron, with the predicted value of 
hot strength. This model revealed a very good performance: Pearson correlation coefficient r of 
0.939 and a standard error of 11.8 MPa. This precision is inferior to the performance of hot 
strength models developed for specific alloys [9], but is very good for a model including 
chemical composition. This trained neural network was converted in a simple BASIC subroutine 
for use in mathematical models for off-line calculation of hot rolling load and pass schedule for 
the COSIPA plate mill. 
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Figure 6: Radar-type graphic showing the forecasting power of the several models tested in [9], 
in terms of the standard error of estimate, in kgf/mm2. 

 
 
A neural network is as good as the data used during its training step. The alloys 

studied in this work were selected according to its participation in the productive mix of the plate 
mill. Unfortunately, this criterion was not adequate from a scientific standpoint. Another problem 
was the scarcity of data, as only nine steels are available to develop this model that can involve 
up to ten chemical elements. In the example of table II, one can see that C content of the 
considered steels varies between 0.09 and 0.16%, while the range of Mn content is from 0.53 to 
1.50%. However, C content is roughly proportional to Mn content. So, if a neural network is 
trained to consider the effect of chemical composition using these data, its results for a test steel 
containing, for instance, 0.16% C and 0.53% Mn, are potentially unreliable. These single values 
of C and Mn are within the range used in the training of the neural network, but data used during 
its training did not include this particular combination of these elements, that is,  “high” C and 



 

“low” Mn. In fact, this case constitutes an extrapolation of the available data and, in this case, the 
predictive power of the neural networks is doubtful. 

A neural network can be ideally trained to “learn” the effect of chemical 
composition in hot strength only if the data set available includes the results of tests performed 
with steels which chemical compositions cover all situations possible. This only can be made 
using a factorial experimental design, and certainly will involve the testing of some dozens or 
even hundreds of steel alloys. The work and cost involved in such research project would be very 
high if it would be developed from scratch. A possible solution to minimize this problem could 
be cooperative work between research institutions in this field, through the sharing of hot strength 
data. 

Recently some results were published [12] about the modeling of hot strength 
of steels from thermomechanical parameters and chemical composition. They tested six steels, 
which chemical composition can be seen in table III: an I.F. steel, an extra-low C steel, three low 
C steels and one Nb steel. Hot strength was determined using isothermal compression tests with 
cylindrical samples, with exception of a low C steel, which was tested using isothermal ring 
compression tests. These steels were tested under temperatures varying from 860 to 1100oC and 
strain rates from 0.001 to 1 s-1. The input data of the neural networks included temperature, strain, 
strain rate, C, Mn, Si and Nb contents. Trials showed that the best results were got with one 
hidden layer with 25 neurons. The output layer, of course, was constituted of a single neuron, the 
value of hot strength. Input data included the full range of the hot strength versus strain curve, 
that is, the steps of strain hardening, dynamic recrystallization and steady state steps. 

The predictive power of the neural network was very good. After a training 
step with 60,000 iterations, it showed an average error of approximately 0.10% during the test 
step with data not showed during the training step. The standard deviation of this error was of 
3.77%, and the maximum error was about 18%. The predictive performance of this neural 
network was better than some empirical equations (Wang, Voce and Jonas) and even than a fuzzy 
inference model. 

 

AÇO  C  Mn  Si  Nb 

IF 0.0026 0.16 0.0006 0.0029 

ELC 0.003 0.27 0.35 - 

C1 0.045 - - - 

C2 0.190 - - - 

C3 0.343 - - - 

Nb 0.043 1.43 0.312 0.075 
 
Table III: Chemical composition of the steels in [12]. 

 
 

As tests were performed with data deriving from the same steels that generated 
data for the training step of the neural network, this work does not demonstrate the effective 
capability of the neural network to model the effect of the chemical composition on hot strength. 
This only could be checked if the neural network would be tested with data from a steel with 
different chemical composition from the steels that originated data for the training step. Once 
more, the problem of the scarcity of hot strength data appears. As it was available data from only 



 

six steels, the use of data from one alloy only for testing purposes certainly would impair the 
predictive power of the neural network, as these data would not be available for its training step. 

Other work [13] deals specifically with the prediction of hot strength, taking in 
account the softening that occurs during rolling of extra-low C steels near the Ar3 temperature, 
that is, the temperature at which austenite decomposition begins during cooling. The chemical 
composition of the steel studied in this work is the same as the ELC alloy mentioned in table III, 
as well the experimental procedure for the determination of the hot strength data. The neural 
network developed in this paper was specific for this kind of steel. Its input layer has four 
neurons, corresponding to temperature, strain, strain rate and a so-called phase index. The 
function of this last parameter was to make the neural network distinguish the flow curves in the 
various regimes: austenitic, austenitic-ferritic and ferritic. This phase index is the volume fraction 
of transformation of austenite in ferrite. There were two hidden layers, each one with 12 neurons. 
Of course, the output layer was constituted of only one neuron, corresponding to hot strength. 
After a training step consisting of 60,000 iterations, this neural network showed an average error 
of 0.066% during the testing step with data not used during the training step; the standard 
deviation of this error was of 2.55%. Its maximum error was lower than 10%. It must be noted 
that the precision of this neural network, specific for the ELC steel, was greater than the precision 
of the more general neural network developed in the other work [12], which considers the effect 
of the chemical composition of steels. 

This work highlights other advantage of the use of neural networks in the 
modeling of hot strength, that is, the incorporation to the model of the softening that occurs in the 
vicinity of the Ar3 temperature. This effect is rarely included in the hot strength empirical 
formulas. 

The calculation of steel hot strength by neural networks is becoming rather 
common in Hot Strip Mill automation systems, under the harsh conditions of the industrial 
environment. This approach is already being used by Siemens and Voest-Alpine.  

In the automation system developed by Siemens, hot strength characteristics of 
the steel are described by α, a parameter that characterizes the peculiarities of the material to be 
rolled. In a first approach, this parameter is the same for all the seven rolling stands of this 
finishing train. The input parameters used for the calculation of this parameter are basically the 
chemical composition of the steel being rolled, in terms of its C, Si, Mn, P, S, Al, N, Cu, Cr, Ni, 
Sn, V, Mo, Ti, Nb and B contents [12-16]; 

The system developed by Voest-Alpine uses a neural network that calculates 
steel hot strength from the chemical analysis of the steel, rolling temperature and speed, thickness 
reduction and a mill stand dependent parameter. Tests were carried out to check the ideal number 
of hidden layers; their results showed that results from networks with two hidden layers were 
comparable to those gained from one hidden layer. So, as models with only one hidden layer 
require much lower computer time for calculation, it was decided to work with this architecture 
of network. The output layer has one neuron, which, of course, corresponds to the value of steel 
hot strength [17]. 

Trials were carried out to determine the optimum number of neurons in the 
hidden layer. The use of four neurons produced the best results, yielding average pattern errors of 
0.42% for the first stand of the Finishing Mill and 2.03% for the seventh stand. The much greater 
error observed for the last stand can be explained by the fact that errors in the calculation of the 
hot strength are summed up during the rolling process. Besides that, rolling process becomes 
more complex in the last stands due to recrystallization effects. The use of a greater number of 
neurons in the hidden layer worsened the performance of the model, which decreased to 0.77 and 
2.92%, respectively. The performance of this “universal” neural network, valid for all steel 
grades, was comparable with the precision of “individual” neural networks, developed for each 
steel grade. The average test pattern errors for these “individual” models ranged from 1.06% 



 

(QSt380TM) to 3.73% (microalloyed steel), while the global average test pattern error of the 
“universal” neural network was approximately 2.27%. 

 
 

- CALCULATION OF ROLLING LOADS 
 
The calculation of roll forces in hot rolling can be carried out through the use 

of neural networks, as described in [18]. Its entry layer had five neurons: reduction in thickness, 
initial thickness, peripheral speed of the work rolls, a deformation resistance factor and 
temperature. The hidden layer had only three layers. Naturally, the output layer is constituted of 
only one neuron, that is, the value of the rolling load. 

A neural network was tested with real data from the first stand of a continuous 
hot rolling mill, showing a R.M.S. error less than 5% for the predicted values of load. However, 
at the moment of the publication of that paper, the model needed to be trained with 
supplementary data in order to widen its working range. 

Another example of the prediction of hot rolling loads by a neural network was 
developed in [19]. However, in this specific case, data used to train the neural network was 
generated by an analytical model for hot rolling load calculation, based on rolling theory; no 
experimental or industrial data was used. The neural network used in this case was of the feed-
forward type, with a input layer with eight inputs which, unfortunately, were not identified; a 
hidden layer with 28 neurons and a output layer with one neuron corresponding, of course, to the 
calculated hot rolling load. A data set with 4832 was used during the training of the network. An 
outstanding characteristic of this work was the use of the Optimal Brain Damage algorithm to 
prune useless neurons in the network. The suppression of unimportant weights from a neural 
network promotes several improvements, as better generalization capacity, fewer training 
examples required and improved speed of learning. After training, the model was able to 
calculate hot rolling loads with almost all prediction errors within 5%. With the use of the 
Optimal Brain Damage algorithm, the 281 total connections of the original neural network were 
reduced to 177, that is, a 37% decrease. This corresponds to an increase of approximately 40% in 
the training speed of the model, with no impairment in the precision of the predicted values. 

On the other hand, the modeling of hot rolling forces under industrial 
conditions is becoming a typical example of the application of the mathematical model-neural 
networks hybrid approach, as mentioned in the Introduction of this chapter. 

This combination model, developed by Siemens AG, was firstly used for the 
calculations of hot rolling loads in the finishing train of the Hot Strip Mill of the Westfalen Steel 
Plant, belonging to Krupp-Hoesch Stahl AG in Dortmund, Germany [2]. Similar models were 
installed in other hot strip mills, like Krupp-Hoesch and Thyssen (Germany), Voest Alpine Stahl 
(Austria), ACB (Spain), Acme, Gallatin, Nucor, Steel Dynamics and Trico Steel (U.S.A.), 
Algoma (Canada), Hylsa (Mexico), Hanbo (Korea) and ISPAT (India). Siemens also announced 
the future use of neural networks in the automation system of the Hot Strip Mills of Rautaruuki 
(Finland) and EKO (Germany), as well in the new heavy plate mill of SSAB Oxelösund 
(Sweden) and in an aluminum hot strip mill in Brazil [14-17,20-23]. 

For the sake of accuracy, this model can be considered as a serial configuration 
of parameter-network and correction-network. The calculation of the hot rolling load is 
performed as follows: 

 
a)  A neural network firstly calculates α, as described in the previous section; 
 
b) Material temperature is a parameter that must be delivered to the model, but it is not 

known in advance: it must be calculated. This is done with the help of a combination 



 

of algorithmic model and correction-network. The traditional mathematical model 
precalculates the trend of the strip temperature from its entry into until its exit from 
the finishing mill. These calculated temperatures are checked during the ensuing 
strip-run by comparison with measured values taken at the second and last rolling 
stands. This yields two distinct temperature errors, which train a specific neural 
network. After the training, this network can correct the predictions made by the 
traditional mathematical model, but only for the material temperature at the two 
measuring stations. However, a plausible correction can be derived for the model 
temperature at other locations. So, the correction values calculated by the neural 
network are distributed among the individual temperatures for each stand. 

 
c) An input vector containing parameters like work roll diameter, reverse tension, 

forward tension, material temperature (calculated by the hybrid model of the item 
[b]), width, thickness and thickness reduction of strip is delivered to a traditional 
mathematical model that calculates the rolling load for each rolling stand; 

 
d) The same input vector of the item [b] and the α parameter calculated in the item [a] 

are delivered to the input layer of a Correction Neural Network. This network 
calculates a correction factor for each rolling stand, which will multiply the result of 
the mathematical model, giving the correct value of rolling load. 

 
This system can be trained on-line, thus avoiding the gross errors typical of the 

conventional adaptation of process models. Besides that, since the chemical analysis of the 
material is entered into the neural networks as input data, it is no longer necessary to classify the 
product range for model adaptation. Compilation and maintenance of the comprehensive material 
classification tables are no longer necessary. 

The use of this new approach of mathematical model, incorporating the use of 
neural networks, lead to an improvement in the mill performance, as can be seen in table IV. 
According to Siemens, improvements the calculation of hot rolling loads using neural networks 
are 20% more accurate than the values generated by classical methods. The improvement in strip 
temperature is about 35%. These first results were considered satisfactory; after all, since 1994 
neural networks become a standard method used in every rolling mill automation systems 
delivered by Siemens [22]. However, work still continues on improvements in new versions of 
these hybrid models.  
 

Type of Neural 
Network 

Month Number of 
Alternating Class 

Strips 

Improvement in 
Mean Absolute 

Error 
[%] 

Improvement in 
Standard 
Deviation 

[%] 
α Calculation July 1993 4594 10.6% 12.8% 
α Calculation December 1993 3602 12.5% 13.0% 
∆T1 Calculation September 1993 3803 20.0% 17.1% 
∆T2 Calculation September 1993 3803 42.0% 39.2% 
 
Table IV: Test results for the neural networks used at the Westfalen hot strip mill [2]. 
 
 



 

It is interesting to note that also Voest-Alpine developed its own hybrid 
automation system for hot strip mill automation using mathematical modeling and neural 
networks, despite the fact of its Linz Hot Strip Mill has a similar system delivered by Siemens 
[23]. However, there are no published data available about the performance of Voest-Alpine 
system under industrial conditions.  

The approach of the Voest-Alpine for the calculation of hot strength of steel is 
somewhat different from Siemens. The practical use of the hybrid model showed that, for some 
kinds of steel, a specific value of α must be calculated for each rolling stand. So, it is being 
developed another neural network to identify such classes of steel that require calculation of 
several values of α [2]. One of the functions of this parameter is to emulate the microstructural 
refining that the rolling stock undergoes when it is deformed in successive rolling stands [15]. 

There is a work [13] describing with some detail a hybrid model mathematical 
model-neural network for the calculation of hot rolling load in a laboratory hot rolling mill. The 
calculation steps of this model are as follows: 

 
a) Calculation of the hot strength of steel, using a model already described in the end of 

the last topic. The modeled alloy was the ELC steel, which chemical composition can 
be seen on table III; 

 
b) Calculation of the hot rolling temperature. The average temperature in the roll bite is 

the most representative value for this parameter. However, this temperature is mainly 
a function of six process variables, namely: heat transfer coefficient in the contact 
area, initial temperature of strip, flow stress, roll speed, initial thickness and 
reduction. Its calculation requires a finite element algorithm. However, such 
algorithm still requires excessive computation time to be used on line. So, the 
solution was the off line determination of a database matrix containing the calculated 
values of the average roll bite temperature, using the M.E.F. algorithm and the 
corresponding input parameters. Then these data were used for train a 25-neuron 
single hidden layer neural network. The six variables above are the input to this 
network; its output is the average temperature. It were used 75% of the available data 
to train this network; the rest were used for test it. After a training procedure of 
60.000 iterations, it presented a testing error of -0.119%, with 99.5% of the relative 
errors of data being within ±1.3%. 

 
c)  Force is calculated by the model of Alexander-Ford, which is expressed by the 

formula 
 

F k Q l wm p d=                      (1) 
where F is the roll separating force, km is the mean constrained flow stress in the roll 
bite for plane strain conditions, ld is the contact length, w is the rolling stock width 
and Qp is a geometric factor. While ld depends on the geometric configuration of the 
rolling mill and the stock being rolled, km can be calculated by the networks 
described in the items a) and b). Qp is defined by the equation 
 

Q Qp = +0 25. ( )π             (2) 
 
The original model of Alexander-Ford proposes the following formula for Q: 
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where hi and hf are the initial and final thickness of the rolled piece. The term Qp is 
strongly affected by the geometry of roll bite and interface conditions between the 
rolls and rolled piece. So, rolling parameters as lubricants, roughness of work roll and 
scale influence the value of this parameter, as this factor reflects the dynamic 
conditions of the mill. In order to improve the precision of this model, it was decided 
to calculate Qp using measured values of rolling load using the inverted model of 
Alexander-Ford. So, it was build a database containing all rolling data and the 
calculated values of Qp for 52 selected cases. The next step was to define a neural 
network for learn about the calculation of Qp from the information available on this 
database. It was verified that this parameter depends on the initial temperature and 
thickness, reduction and contact length; these variables constitute the input layer of 
the neural network. Two hidden layers with 12 neurons each were used, similar to the 
neural network applied for the hot strength calculation. The output layer has, 
naturally, only one neuron, the value of Qp. The training of this neural network 
required 80,000 iterations. The average error in the calculation of this parameter was 
equal to 0,022 %, with most of data within ± 2 % and maximum error within ± 6 %. 

 
The calculation of roll load is as follows. First, the initial flow stress of the 

rolling stock before rolling is calculated by the hot strength network. After that, the average 
temperature in the roll bite is calculated by the temperature network. Then the exact value of the 
average flow stress in the roll bite is re-calculated by the hot strength network. The next step is 
the calculation of Qp by its corresponding network. Finally, the rolling load is calculated by 
equation (1). 

The precision of the global model was checked at one condition, a 15% 
reduction applied to a rolling stock with initial thickness equal to 9.2 mm. Table V shows the 
performance between the conventional Alexander-Ford model and the same model, but with Qp 
calculated by the neural network. It can be seen that it was got a impressive 75-90 % reduction in 
the relative errors at relatively high temperatures (950oC), whereas this reduction decreased to 
39% at 870oC and, at 809oC, the performance of the conventional model was slightly better than 
the observed for the neural network. 
 

Temperature 
[oC] 

Relative Error, 
Alexander-Ford Model 

[%] 

Relative Error, 
Hybrid Model 

[%] 
947 11.63 0.99 
956 17.60 4.33 
871 9.58 5.86 
809 4.60 4.97 

 
Table V: Performance comparison between the Alexander-Ford and the hybrid models [13]. 
 

 

 



 

- DETECTION OF “TURN-UP” DURING PLATE ROLLING 

 
The turn-up, or excessive bowing upwards of  rolled stock during plate rolling 

is a serious problem, as material being rolled can collide with the rolling stand or ancillary 
equipment’s, causing extensive damage. This problem was frequent at COSIPA’s plate mill, 
especially during the processing of Ni steels. 

A previous work showed that alterations in the pass schedule could minimize 
the occurrence of turn-up, and led to the development of a statistical model for the calculation of 
an optimized pass schedule. It was showed then that there was a critical range of strain values to 
be avoided during plate rolling. 

However, sometimes this statistical model calculated unfeasible values of roll 
gaps. In some cases the calculated values were excessively low, jeopardizing productivity; in 
other occasions, they were excessively high, well above the mill’s capacity of load, torque and 
power. 

As soon the use of neural networks became available, it was a natural idea to 
use them in this application, as the statistical model was unsatisfactory [5]. After several trials, it 
was developed the following neural network: 

 
- Input layer with five neurons: 

. Desired turn-up index 

. Work roll peripheral speed [r.p.m.] 

. Rolling load [t], calculated by the Sims model 

. Rolling stock width [mm] 

. Roll gap distance [mm] used in the former rolling pass. 
 
- Hidden layer with eleven neurons. 
 
- Output layer with one neuron, which represents the recommended roll gap 

distance [mm] for the next rolling pass. 
 
The turn-up index used here, one of the input variables, was defined using an 

arbitrary scale, from 0 to 5, that is proportional to defect seriousness. 
The neurons number of the hidden layer of this neural network was calculated 

after the Hecht-Kolmogorov’s theorem, that was already mentioned. In fact, it was verified that 
this was the best configuration for maximizing the precision of this neural network. 

The developed neural network showed Pearson’s correlation coefficient r of 
0.992 and standard error of estimate of approximately 3.0 mm. Figure 7 shows the dispersion plot 
of the real and calculated values. The most influencing variables, as indicated by the trained 
neural network, are turn-up index and initial roll gap distance, followed by rolling stock width, 
rolling load and work roll peripheral speed, considering a decreasing rank of importance. 

As can be seen in the graphic of figure 7, all calculated values are very near 
from the real values. That is, the neural network did not generate non-sense values as the previous 
developed regression polynomial equation. 

The previous work about the turn-up occurrence in COSIPA’s plate mill had 
revealed that this defect was more frequent in a specific range of roll gap values, from 80 to 60 
mm. This is confirmed by the trained neural networks, as the initial roll gap value is one of the 
most influencing variables of the model. Besides that, the standard error of estimate is admissible, 
as it is equal to only 7.5% of the minimum roll gap value. However, this is valid since the final 
thickness of plate is not located between 40 to 80 mm. 



 

 
Roll Gap

Calculated Values [mm]

Real Values [mm]  
 
Figure  7: Dispersion plot of the calculated and real values from the model for roll gap 

calculation regarding control of the turn-up defect [5]. 
 

 

- LONGITUDINAL DISCARD CALCULATION WHEN USING PLANE VIEW 
CONTROL 

 
Plate rolled from continuously cast slabs generally presents longitudinal 

extremities with “tongue” shape. This lowers the rectangularity index of the rolled stock, 
affecting its metallic yield, as irregular portions in the extremities of plate have to be cut. This 
characteristic can be attributed to the peculiar thickness profile of the continuously cast slabs. 
These slabs are slightly thicker in mid-width, resulting in a non-homogeneous mass distribution 
along the rolling stock, which affects the shape of its longitudinal extremities. 

One solution proposed for this problem consists in the application of a special 
thickness profile in the rolling stock during the application of the last pass of the broadsizing step. 
After this special pass, the width of the rolling stock presents a thickness profile that basically 
consists of a “V”-shape notch or presents the shape of a “dog bone”. The development of this 
process in COSIPA led to a 0.7% increase in the metallic yield of the plate mill. 

During the development of this process, it was developed a regression 
polynomial to correlate the “V”-shape notch depth and the total strain applied to the rolled stock 
after the broadsizing step with the length of the discarded portion of the final rolled stock, in 
order to have a better understanding of the process and check its optimization possibilities. This 
polynomial presented a Pearson correlation coefficient r of 0.903 and standard error of estimate 
of 132 mm. 

Once more this appeared to be a good application for the neural networks 
technique, as it could be an opportunity to improve forecasting of the length of the discarded 
portion [5]. The best neural network designed to substitute the polynomial equation had the 
following configuration: 

 
- Input layer with two neurons: 

. “V”-shape notch depth [mm] 

. Total strain applied to the rolled stock after broadsizing step [%]; 
 
- Hidden layer with five neurons (according to the already mentioned Hecht-

Kolmogorov’s theorem); 



 

 
- Output layer with one neuron, which represents the length of the discarded 

portion in the final rolled stock [mm]. 
 
This neural network showed a Pearson correlation coefficient r of 0.943 and 

standard error of estimate of 61 mm. The dispersion plot of real and calculated values of the 
length of the discarded portion in the final rolled stock can be seen at figure 8. 

Although the neural network had showed better performance than the 
regression polynomial (the standard error of estimation fell approximately 54%), errors observed 
in figure 8 still are significant. Perhaps the cause of these relatively high errors stems from the use 
of the discard length as an evaluation parameter of the metallic yield of the process. Really this 
parameter is less representative than the weight or area of the discarded portion but, in 
compensation, is an easier variable to be measured under industrial conditions. 

 
Length of Discarded Portion

Calculated Values [mm]

Real Values [mm]  
 
Figure 8: Dispersion plot of the calculated and real values regarding the neural network model 

for the calculation of the length of the discarded portion in plates submitted to plane 
view control during rolling [5]. 

 

 

- PASS SCHEDULE CALCULATION AIMING PLATE FLATNESS OPTIMIZATION 

 
One of the most stringent quality parameters of plate is its flatness index. The 

traditional approach to flatness control during rolling consists to keep the rate crown variation : 
thickness variation within a restricted range, especially during the last three passes of the rolling 
schedule. This fact was also confirmed at COSIPA’s plate mill. 

 
Mathematical models for the calculation of pass schedules are relatively easy 

to develop, but the use of neural networks is simpler. So, it was decided to use this new technique 
in this application too [5]. The three last passes of the rolling schedule were  modeled regarding 
optimization of plate flatness; one neural network was attributed for each pass. The respective 
three neural networks showed the same configuration, as follows: 

 
- Input layer with ten neurons: 

. Thickness of final plate [mm] 

. Width of final plate [mm] 

. Aimed flatness index in final plate  



 

. Flatness index observed after prior pass 

. Roll gap of  prior pass [mm] 

. Rolling load measured during prior pass [t] 

. Temperature measured during prior pass [°C] 

. Original crown of the upper work roll [mm] 

. Original crown of the lower work roll [mm] 

. Rolling stock tonnage since the last change of work rolls [t]; 
 
- Hidden layer with twenty-one neurons (according to the already mentioned 

Hecht-Kolmogorov’s theorem); 
 
- Output layer with one neuron, which represents roll gap value of the 

corresponding pass [mm]. 
 
The flatness index used in this model varied in the range from 0 to 5: this index 

was greater as plate flatness worsened. 
The performance of  the neural network was very good. The Pearson’s 

correlation coefficient r corresponding to the last but two, penultimate and last pass were 0.998, 
0.998 and 0.999, respectively; their standard error of estimate were 0.430, 0.394 and 0.140 mm, 
respectively. Figure 9 shows the dispersion plots of the real and calculated values for the three 
last passes of the rolling schedule. 

 

Roll Gap of the Last but Two Pass
Calculated Values [mm]

Real Values [mm]                    

Roll Gap of the Penultimate Pass

Calculated Values [mm]

Real Values [mm]  
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Real Values [mm]  
 
Figure 9: Dispersion plots of the calculated and real values of the last three passes of plate 

rolling, regarding the model for calculation of the pass schedule optimizing plate 
flatness [5]. 



 

 
The most important variables in these neural networks were the aimed flatness 

index, the original crown in the upper work roll and the rolling stock tonnage after the last change 
of work rolls. Following to this group, there were parameters of intermediate importance like the 
final plate width/thickness and temperature/load of the prior pass. Finally, variables like prior 
pass flatness index/roll gap did not show great influence, but were vital to improve the precision 
of the neural networks, making feasible its use under industrial conditions. 

In fact, these neural networks identified during their “learning” step the most 
important variables related to flatness that are “traditionally” defined by the rolling theory: 
original crown of work rolls and rolling stock tonnage since change of work rolls. This last 
variable generally shows good correlation with thermal crown and wear of  work rolls, factors 
that affect the resultant roll crown and, consequently, plate flatness. Work roll deflection 
promoted by rolling load was also considered, as this last variable was included in the input layer 
of the neural networks. 

The last pass is the most important to define the final dimensions of plate, 
specially its thickness. The errors observed in the results calculated by the respective neural 
network varied from -0.26 to +0.17 mm, practically comprised within commercial plate thickness 
tolerance range. This results can be even improved, as a more precise data acquisition system 
becomes available, thus avoiding human errors during data collection and improving the 
precision of the measured parameters. Those facts undoubtedly will contribute to a better 
accuracy of these neural networks. 

 

 

- PREDICTION OF PROCESS TEMPERATURES IN HOT STRIP MILLS 

 
Neural networks were also used for the determination of the finishing 

temperature of rolling stock at the Hoogovens hot strip mill [24]. In this case, the input 
parameters were the same used in the traditional linear model incorporated to the automation 
system of the mill: re-predicted finishing temperature after the last stand; base finish rolling 
temperature, adapted from strip to strip; rolling speed of the last stand; strip thickness after the 
last finishing stand; calculated temperature at first finishing stand; and calculated temperature at 
first finishing stand. A feed-forward network, with one hidden layer, was used. The input layer 
had eight neurons, corresponding to the parameters already mentioned. Best results were got 
using seven neurons in the hidden layer. The output layer had only one neuron, corresponding to 
the finishing temperature. 

The performance of the neural network model was 25% better than the 
previous linear statistical model. The relative standard deviation of the former model was about 
6.0oC, while the neural network showed a value of 4.4oC. As neural networks are capable of 
handling different, non-linear dependencies in different areas of the input space, its prediction 
power generally is improved in comparison with linear models. In fact, a detailed analysis 
revealed that linear approximations seemed acceptable for most input parameters of the statistical 
linear model. However, relationship between the finishing temperature and some input 
parameters are clearly non-linear. This explains the better performance of the neural network 
model. 

Strip cooling at the runout table of  hot strip mills can also be modeled using 
neural networks. The first part of the hot strip mill runout table at the Port Talbot works of British 
Steel was modeled using neural networks [25]. Data used for training and testing of the neural 
network models consisted of 247 sets taken from three coils of C-Mn steel. They were all rolled 



 

in the same period, having identical target gauge, finishing temperature, interrupt temperature and 
coiling temperature. 

Three feed-forward neural networks were tested. The input layer was the same 
for all these networks; it has eight neurons, corresponding to the finishing temperature, position 
of the coil segment in relation to the head end of the coil and water flow percentage of the first 
three top banks and the first three bottom banks. The output layer corresponded to the interrupt 
temperature, which is the strip temperature just after the first part of the runout table. Two of the 
proposed neural networks had only one hidden layer, with 20 and 4 neurons, respectively. The 
remaining network has two hidden layers, with 10 neurons each. 

Surprisingly, the simpler neural network (one hidden layer with 4 neurons) 
showed best results, with an average error of 2.1oC and a maximum error of 14oC. This 
performance was far better than the standard model being used nowadays in the equipment, 
which showed an average error of 10.4oC and a maximum error of 25oC. 

 

 

- PREDICTION OF AUSTENITIZING TEMPERATURES AND AUSTENITE 
TRANSFORMATION 

 
A recently published work [26] showed the successful use of neural networks 

for the calculation of the Ac1 and Ac3 temperatures from the chemical composition of the alloy 
(in terms of contents of C, Si, Mn, S, P, Cu, Ni, Cr, Mo, Nb, V, Ti, Al, B, W, As, Sn, Zr, Co, N, 
O) and the heating rate used during the austenitizing treatment. The data set used for the 
training/testing steps of the neural network was gathered from TTT atlases; data from 788 alloys 
were compiled. The neural networks have only one hidden layer, which had four neurons for 
calculation of Ac1 and two neurons for Ac3. The lower number of neurons for the last neural 
network can be justified by the little influence from the starting temperature over Ac3. These 
models can estimate these transformation temperatures to an accuracy of about ±40oC (95% 
confidence limits). The analysis of the performance of these models showed that they extracted 
the correct metallurgical relationships between the heating rate/alloy content and these 
temperatures. The errors observed in the predictions can be largely attributed to the different 
starting microstructures in the samples used in the austenitization. 

A previous work [27] used neural networks for the modeling of isothermal 
transformations diagrams (TTT diagrams) of hypoeutectoid heat treating steels with no 
microalloying elements. The input data for this network were the content of C, Mn (1.5% max.), 
Cr (3.0% max.), Ni (4.0% max.) and Mo (1.5% max.), plus the temperature (550oC being the 
lower limit for calculation). The boundary between ferrite and pearlite was not considered in this 
case. 

The database considered for training of the neural networks derived from 52 
alloys listed at the IRSID Atlas about transformation curves. Its training also considered that 
there is no transformation above the Ac3 temperature and the time to transformation was null if 
the austenitization temperature was lower than Ac3. Of course, also in this case neural networks 
were capable of determining the Ac1 and Ac3 from the chemical composition of the steel. 

It was discovered that the best predicting neural network was also the most 
simple - one hidden layer with two neurons. Tests with similar alloys used in the training of the 
neural network revealed some tendency of greater errors in the range of low values of time, for 
both curves, transformation start and finish. However, the predictive capability of these neural 
networks was not quantitatively evaluated with detail. It was only verified that the influence of 
the data on the TTT diagram could only be effectively forecast by the neural network if the 



 

variation in the data exceeds ± 0.01% for C, Mn, Cr and Ni; ± 0.05 % for Mo and ± 5oC for the 
temperature. That is, considering two identical alloys, except by their Mo contents (0.30 and 
0.34%, for instance), the comparison of both predictions carried out by the neural network could 
not correspond to the real effect that this alteration in the Mo content can produce. 

Tests about the extrapolating power of these neural networks were carried out. 
It were observed errors of about 5 to 9% in the transformation start curve predictions, and up to 
20% regarding the transformation finish curves. 

Similar papers were published, describing neural networks for the calculation 
CCT diagrams [28] and martensite start temperature [29] from the chemical composition of 
steels. 

The neural network developed in the first work calculates the start/end 
temperatures for the formation of ferrite, pearlite and bainite [28]. An important problem to be 
solved here is the conversion of the diagram into numerical format, which will be processed by 
the neural network. In this case, the intercepts of 23 fixed continuous cooling curves with the 
boundary lines indicating the time-temperature combination leading to a particular transformation 
product were determined. As relatively few data was available – only 89 vanadium steels, whose 
CCT diagrams were available from a single source – the training strategy was somewhat different 
from the usual, as it used cross-validation. 

This complex problem was solved with a relatively simple feed-forward neural 
network, with three layers. The input layer had 13 neurons (austenitization temperature, C, Mn, 
Si, S, P, Cr, Ni, Mo, V, Cu, Al and N contents); the hidden layer had only 5 neurons and the 
output layer had 23 neurons, each one corresponding to a specific cooling curve. The 
performance of the neural network was relatively good for high and low cooling rates, presenting 
errors from 25 to 40oC. However, the observed error for intermediate cooling rates was greater, 
reaching eventually up to 100oC. The reason for this behavior can be explained by the greater 
complexity of the austenite transformation process that occurs under intermediate cooling rates 
and the ill-conditioned intersection angle between the cooling and the transformation curves 
along the intermediate cooling ranges of the CCT diagram. Besides that, the numerical 
conversion of the CCT diagram and the experimental errors inherent to its experimental 
determination also contributes to increase the error or the neural network model. 

The effect of C and Mn over the Ar3 temperature (that is, ferrite transformation 
start), calculated by the neural network, yielded theoretically sound results: a decrease of 225oC 
per percent of C (since C content is less than 0.40%) and a decrease of 30oC per percent of Mn. 

A bunch of empirical equations, developed through statistical multiple 
regression, was already available for the determination of the martensite start transformation [29]. 
In this case, it was proposed the calculation of martensite start temperature by a feed-forward 
neural network with 12 neurons in the input layer, representing the contents of C, Si, Mn, P, S, 
Cr, Mo, Ni, Al, Cu, N and V. Its hidden layer has six neurons. Of course, the output of the 
network is Ms, the martensite start temperature. 

Data used in the training and testing of this neural network was extracted from 
an atlas of continuous cooling transformation diagrams for vanadium steels. There was data 
available for 164 steel grades; 20 were selected for the validation of the network, while the 
remaining 144 were used for training. 

The performance of this model in the prediction of the martensite start 
temperature was far better than the performance of the previously published regression equations. 
Its relative standard deviation was only 12oC, while this error varies between 34 and 61oC for the 
empirical equations. The neural network allowed also to verify the effect of some alloy elements 
over the value of Ms. This model clearly predicts a non-linear relationship between Ms and 
carbon concentration; this relationship varies with the base composition being considered. For its 
turn, manganese lead to a linear variation in Ms. It was also verified that the alterations in Ms 



 

promoted by Cr, Ni and V fall within experimental accuracy. The role of  Mo was somewhat 
complex: for base alloys with 0.2% C it promotes an increase in Ms, while in base alloys with 
0.4% the alterations in this parameter promoted by Mo fall within experimental accuracy. 

Neural networks are being used also to the prediction of microstructure and 
final mechanical properties of hot rolled [30] or forged [31] steels. This kind of model is very 
complex, due to the extremely large number of parameters as inputs and many characteristic 
parameters as outputs. Some of these parameters do not directly affect microstructure, but 
indirectly through others, those have their own effect as well. 

A proposed neural network used to predict microstructure and mechanical 
properties of hot rolled steels [30] use the following input variables: roll radius, entry thickness, 
exit thickness, rolling speed, entry temperature, exit temperature, times and cooling rates, the heat 
transfer coefficient, coefficient of friction, initial grain size and carbon content. The output of this 
model is the grain size at different locations of the cross section of the sample, roll force and roll 
torque. This network has one hidden layer with eleven neurons. Unfortunately, there is no 
information about the real performance of this model. 

Another model was used to evaluate mechanical properties in forged parts [30]. 
The main objectives behind that project were support to alloy design and calculation of alloying 
additions during steelmaking. This neural network uses eleven elemental concentrations, one 
dimension variable and three process temperature variables as input parameters. The output 
parameters are the yield and tensile strengths. Unfortunately there are not more details about the 
real nature of the input data used in this model. 

The neural network used in this example has one hidden layer with three 
neurons. There were 236 sets of industrial data available. Nine sets were eliminated as outliers. 
From the remaining 229 sets, 173 were used in the training and 56 in the test instance. The mean 
prediction error of this network in the test step was 5.5%, that is, about 50 MPa, slightly higher 
than the accuracy of the measured tensile and yield strengths, that was equal to 40 MPa. The use 
of 2, 4 or 5 neurons in the hidden layer lead to impairment of the precision got by the model. This 
model also allowed the verification of the effect of the input variables over the mechanical 
properties of the forged parts. It was found that the strongest nonlinear effects were due to boron 
and two of the temperature variables. The effect of titanium was also nonlinear, but not as strong 
as boron. On the other hand, there was practically no nonlinearity in the effect of chromium. 

It is expected that this model can allow checking how much of a particular 
alloying element should be added to get the required properties. However, if the chemical 
composition is fixed, it is possible to alter strength by adjusting the process temperature variables. 

 

 

- FEASIBILITY OF PRODUCTION OF A PARTICULAR STEEL SHAPE 

 
Normally the decision about the feasibility of the production of a given steel 

grade or product is taken by an expert engineer, who intuitively evaluates the manufacturability 
difficulty grade of it. This ability is acquired through experience. 

A model to systematize this technique in the specific case of shape steels, using 
a hybrid system, expert system and neural networks [31]. The function of the expert system is to 
select the neural network best fitted for the given case. The selected neural network simulates the 
judgement mechanism of the expert engineer, determining if the fabrication of a given product is 
feasible or not. Of course, this neural network must be previously trained with real examples to 
acquire the needed knowledge for this task. 



 

An example of such neural network considers three variables: tensile strength 
lower limit, flange thickness and impact toughness guaranteed temperature. Their values are not 
directly input into the neural network. They are normalized according to a five level division. The 
values corresponding to each level are the data supplied to the neural network. 

So, the input layer of the neural network has 15 neurons. Its hidden layer has 
10 neurons. The output layer has five neurons, each one corresponding to a value of the 
manufacturing feasibility index. Only one neuron will react to a given set of data, signaling its 
corresponding manufacturing feasibility index. The first neuron of the output layer corresponds to 
the lowest value of the manufacturing feasibility index, that is, the worst condition of fabrication. 
For its turn, the last neuron corresponds to the maximum value of the manufacturing feasibility 
index, that is, the best condition of fabrication. The other neurons denote intermediate values of 
this manufacturing feasibility index. 

 

 

- OTHER APPLICATIONS OF NEURAL NETWORKS IN HOT ROLLING PROCESS 
MODELING 

 
The successful application of neural networks in the hot strip rolling load 

calculations motivated the development of other neural network models. Some of them are being 
used, while others still are being developed: 

 
- Prediction of Natural Spread during Hot Rolling. The rolling stock being hot rolled 

normally shows some degree of spread. So, finished strip shows a slight greater width 
than the roughed strip. It is very interesting that this spread be known beforehand, so 
width control in the roughing stand can allow for an appropriate compensation. With a 
more precise calculation, the amount of necessary excess width can be minimized, 
increasing the metallic yield of the process. All the physical and empirical models for 
the calculation of spreading have not yet brought satisfactory results, as the number of 
influencing factors is very large. This fact makes this modeling an exciting field for the 
application of neural networks. Unfortunately, the papers available do not describe this 
model with detail. According to Siemens, neural networks can calculate neural spread 
with a precision 25% superior than the former models [14,15,17]; 

 
- Prediction of the Strip Thickness Profile. This case was already discussed in the 

Introduction of this Chapter, as it is being developed in the form of a synthesis-
network. A reverse model - that is, the prediction of the mill settings from a given strip 
thickness profile - is being developed too [2,14]; 

 
- Prediction of the Spread Behavior at the Rough-Strip Ends (Short Stroke Control). 

The spreading during roughing rolling is not uniform along the length of the rolling 
stock. The spread in the end sections - head and tail - is subject to certain conditions, 
so the shape of the rolling stock in these specific places can show a strong deviation 
from the desired rectangular shape. This problem can be corrected as the roll position 
changes during the edging pass under load, according to a defined operating curve. 
The determination of the correct operating curves for the head and tail sections of the 
rolling stock is the task of the Short Stroke Control (SSC). This role can be played by 
an adequately trained neural network [2,15]; 

 



 

- Determination of Heat Transfer Coefficients in the Cooling Section of the Hot Strip 
Mill [15,23]. 

 

 

- CONCLUSION 

 
Neural networks are not exactly a new modeling resource. Its fundamental 

principles were proposed in the 1940’s; the first hardware and software implementations were 
performed during the 1950’s and 1960’s; its development stalled in the late 1960’s due to hype 
and lack of theoretical background; it resurrected in the mid-1980’s, in function of further 
advancements on its theory and the wide availability of increasingly computer power at low 
costs. In the late eighties, both academic and commercial neural network software became 
available. 

However, almost ten years after the resurgence of neural networks, its 
application in the field of hot rolling still is shy, in spite of the good results that were got. Few 
papers were published, although it is known that many steelworks tested the possibilities of this 
new technique. The majority of the cases described in the literature refer to laboratory 
experiments or industrial off-line models. In the few cases where neural networks were applied to 
real life hot rolling automation systems, they played a coadjuvant role, in the form of calculation 
of adaptive parameters to be used by the main conventional mathematical models. 

This can be assigned to a lack of confidence on the performance of the neural 
networks. As its mathematical foundation still is not completely established, no one knows how 
their results are generated. So, even if its performance is good under practical conditions, fear 
about a sudden unexpected behavior still remains. Another aspect to be considered is the  
resistance to give up on former conventional models that took years and years to be refined.  

Perhaps a more effective use of neural networks in the modeling of hot rolling 
processes is being considered more intensively in steelworks that still do not have hot rolling 
models developed. The  possibility of quick and easy development of precise models from 
scratch using neural networks is tempting. However, the usual lack of instrumentation, data 
acquisition and computer facilities on these rolling mills still is hindering this possibility. 

However, it must be noted that the industrial scale application of neural 
networks in hot rolling mills has effectively begun. The build-up of expertise and experience in 
the use of this new technique that will be collected along time undoubtedly will encourage further 
practical applications. 
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